We are building a world class AI R&D company in Tokyo. We want to develop AI solutions for Japan’s needs, and democratize AI in Japan. sakana.ai/careers

Tokyo, Japan
Joined November 2010
Sakana AI retweeted
Kicking off #TEDAISF2025 with none other than @YesThisIsLion — Co-Author of “Attention Is All You Need” and CTO/Co-Founder of Sakana AI. His reflections on the evolution of AI architecture and what’s next for intelligence, made for the perfect Session 1 opener. 🚀
その他、Applied Research Engineer、 Software Engineerなども引き続き積極的に募集中です。 sakana.ai/careers/ 応募中のポジションについてはぜひ下記をご確認ください。
12
Sakana AI「ビジネス職(プロジェクトマネージャー/プロダクトマネージャー)」募集 sakana.ai/careers/#business-… Sakana AIでは、先端AIの社会実装をミッションとするApplied Teamで「ビジネス職(プロジェクトマネージャー/プロダクトマネージャー)」を募集します。 主な役割は、世界トップクラスの 研究者・エンジニアと協働してビジネスの難題をAIで解決すること。そして、戦略的パートナーとの事業共創やプロダクトのGo-To-Market戦略をリードし、新たなビジネスチャンスを創出することです。 生成AIの社会実装がまさに本格化する今、私たちSakana AIもビジネス展開を加速させています。日本の大企業や世界の政府機関をパートナーに、独自のプロダクトを開発し、社会へ大きなインパクトをもたらす、エキサイティングなフェーズが始まっています。 この挑戦に共に挑んでいただける、熱意ある方からのご応募をお待ちしています!
「大きな物語を失った時代 AIで蘇らせることは可能だ」 月刊ウェッジ2025年11月号の特集『未来を拓く「SF思考」 停滞日本を解き放て』に、Sakana AI COO伊藤錬のインタビュー記事が掲載されました。 全文はこちら:wedge.ismedia.jp/articles/-/… 伊藤が親しんできた文学作品やSF映画作品を手がかりに、 AIと共に創る社会、そしてAI時代に改めて共同体で共有できる「物語」の可能性について語っています。ぜひご一読ください。
4
1
25
「Transformerのアイディアは、何気ない雑談から生まれました…世界を変えようとしたのではなく、ただ翻訳の精度をよくしたかっただけなのです」 10月21-22日に開催される@TEDAISFにて、『Attention Is All You Need』の著者の一人であり、Sakana AIの共同創業者CTOであるLlion Jonesが登壇します。 目標を定めすぎないオープンエンドな研究こそが大きなブレークスルーを生む理由、Transformerの成功がAI業界にもたらした逆説的な状況、そしてそれを乗り越えるための次のアイディアと初期的な成果について語ります。
6
61
2
268
Sakana AI retweeted
先日優勝したICFP Programming Contest 2025にて、実はSakana AIのAIツール「ShinkaEvolve」を使い倒してました、という記事です!単に自動的にスコアアップしただけでなく、AIのアイディアから学べたことが印象的でした。 翻訳&推敲前の日本語版を個人ブログに置いてます:iwiwi.hatenablog.com/entry/2…
Competitive programmers collaborated with Sakana AI’s ShinkaEvolve to win 1st place in the 2025 ICFP Programming Contest 👏 sakana.ai/icfp-2025 What happens when competitive programming experts master a cutting-edge AI tool? Team Unagi, which includes Sakana AI's Research Scientist Takuya Akiba (@iwiwi), recently deployed “ShinkaEvolve”—our evolutionary code optimization framework released last month—in the famous global programming contest: @icfpcontest2025. Amazingly, the result was a 1st place finish. 🥇 This human-AI collaboration also yielded several fascinating insights. ShinkaEvolve automatically improved the team’s SAT encoding, accelerating computation speed by up to 10x. This enabled them to find near-optimal solutions for large-scale problems that were previously intractable. Moreover, it created a virtuous cycle where the AI’s discovery of using auxiliary variables became a significant hint for subsequent human-led development. This case shows how a complementary collaboration between humans and AI can be a powerful approach for the future: a cycle where humans design the high-level strategy, AI performs the intensive improvements, and then humans interpret the AI’s discoveries to apply them to new challenges. A huge congratulations to everyone on Team Unagi! At Sakana AI, we look forward to fostering more collaborations between human professionals and cutting-edge AI.
2
65
5
337
Sakana AI retweeted
Stoked to see ShinkaEvolve support @SakanaAILabs 's @iwiwi's Unagi team win the 2025 ICFP Programming Contest 🎉 ShinkaEvolve is an LLM-driven evolutionary program optimization system that discovered efficient auxiliary variables for a downstream SAT solver 🚀 Code: github.com/SakanaAI/ShinkaEv… Paper: arxiv.org/abs/2509.19349 Blog: sakana.ai/shinka-evolve/ To me, these are the sparks of cultural evolution - from vibe coding to vibe optimization driven by human-in-the-loop co-discoveries ✨ Big congratulations to the team 🤗
Competitive programmers collaborated with Sakana AI’s ShinkaEvolve to win 1st place in the 2025 ICFP Programming Contest 👏 sakana.ai/icfp-2025 What happens when competitive programming experts master a cutting-edge AI tool? Team Unagi, which includes Sakana AI's Research Scientist Takuya Akiba (@iwiwi), recently deployed “ShinkaEvolve”—our evolutionary code optimization framework released last month—in the famous global programming contest: @icfpcontest2025. Amazingly, the result was a 1st place finish. 🥇 This human-AI collaboration also yielded several fascinating insights. ShinkaEvolve automatically improved the team’s SAT encoding, accelerating computation speed by up to 10x. This enabled them to find near-optimal solutions for large-scale problems that were previously intractable. Moreover, it created a virtuous cycle where the AI’s discovery of using auxiliary variables became a significant hint for subsequent human-led development. This case shows how a complementary collaboration between humans and AI can be a powerful approach for the future: a cycle where humans design the high-level strategy, AI performs the intensive improvements, and then humans interpret the AI’s discoveries to apply them to new challenges. A huge congratulations to everyone on Team Unagi! At Sakana AI, we look forward to fostering more collaborations between human professionals and cutting-edge AI.
5
13
92
競技プログラミングチームがSakana AIのShinkaEvolveと協働、ICFPコンテストで一位に👏 英語ブログ:sakana.ai/icfp-2025 競技プログラミングのエキスパートが、最先端のAIツールを使いこなしたらどうなるのでしょうか? Sakana AIのResearch Scientistである秋葉拓哉 @iwiwi が所属するTeam Unagiはこの度、9月に発表したばかりの進化によるコード最適化フレームワーク「ShinkaEvolve」を世界的なプログラミングコンテストである @icfpcontest2025 に実戦投入しました。 結果は見事1位に。そしてこの人間とAIとの協働では、いくつもの興味深い学びが得られました。 ShinkaEvolveは、Team Unagiが採用した問題のSAT論理式へのエンコーディングを自動で改善し、計算速度を最大で約10倍に高速化。これにより、従来は解けなかった大規模な問題を準最適に解くことが可能になりました。 それだけでなく、AIが発見した補助変数を使うアイディアが、その後の人間の開発の大きなヒントになるという好循環が生まれました。 今回の事例は、ShinkaEvolveが実際の複雑なソフトウェアの性能最適化というタスクにおいて有効なツールとなり得ることを示すとともに、人間とAIの相補的な協働が、今後の有効なアプローチになることを示すエキサイティングな一例と言えると思います。 すなわち、人間が問題に対する大局的な戦略とベースラインとなる解法を設計し、AIがその中で探索的な改善を自動で行う。そして、AIの発見から得られた知見を再び人間が解釈し、別の課題に応用するというサイクルです。 Team Unagiの皆様、この度は本当におめでとうございます! Sakana AIでは、人間のプロフェッショナルと最先端のAIの協働を、これからも多く生み出していきたいと思います。
15
2
112
Competitive programmers collaborated with Sakana AI’s ShinkaEvolve to win 1st place in the 2025 ICFP Programming Contest 👏 sakana.ai/icfp-2025 What happens when competitive programming experts master a cutting-edge AI tool? Team Unagi, which includes Sakana AI's Research Scientist Takuya Akiba (@iwiwi), recently deployed “ShinkaEvolve”—our evolutionary code optimization framework released last month—in the famous global programming contest: @icfpcontest2025. Amazingly, the result was a 1st place finish. 🥇 This human-AI collaboration also yielded several fascinating insights. ShinkaEvolve automatically improved the team’s SAT encoding, accelerating computation speed by up to 10x. This enabled them to find near-optimal solutions for large-scale problems that were previously intractable. Moreover, it created a virtuous cycle where the AI’s discovery of using auxiliary variables became a significant hint for subsequent human-led development. This case shows how a complementary collaboration between humans and AI can be a powerful approach for the future: a cycle where humans design the high-level strategy, AI performs the intensive improvements, and then humans interpret the AI’s discoveries to apply them to new challenges. A huge congratulations to everyone on Team Unagi! At Sakana AI, we look forward to fostering more collaborations between human professionals and cutting-edge AI.
3
44
5
261
生成AI、進化の鍵を握る「長期思考」 Sakana AIのResearch Scientist、秋葉拓哉 @iwiwi のインタビューがIT Mediaエンタープライズに掲載されました。 itmedia.co.jp/enterprise/art… 今後のAIの大きなチャレンジである「Long-Horizon Task」と、Sakana AIでの成果について語りました。
14
3
98
Sakana AI retweeted
Introducing ShinkaEvolve, an open-source approach to sample-efficient LLM-driven program evolution 🧬 Paper: arxiv.org/abs/2509.19349 Blog: sakana.ai/shinka-evolve/ Code: github.com/SakanaAI/ShinkaEv… The AI Scientist, Darwin Goedel Machine, and AlphaEvolve have fundamentally shaped my perspective of scientific hypothesis testing as tree search 🌴 While LLMs provide smart recombination operators, effective program mutations remained critical challenges for open-ended and sample-efficient discovery. ShinkaEvolve aims to address this problem and has been battle-tested.
We’re excited to introduce ShinkaEvolve: An open-source framework that evolves programs for scientific discovery with unprecedented sample-efficiency. Blog: sakana.ai/shinka-evolve/ Code: github.com/SakanaAI/ShinkaEv… Like AlphaEvolve and its variants, our framework leverages LLMs to find state-of-the-art solutions to complex problems, but using orders of magnitude fewer resources! Many evolutionary AI systems are powerful but act like brute-force engines, burning thousands of samples to find good solutions. This makes discovery slow and expensive. We took inspiration from the efficiency of nature. ‘Shinka’ (進化) is Japanese for evolution, and we designed our system to be just as resourceful. On the classic circle packing optimization problem, ShinkaEvolve discovered a new state-of-the-art solution using only 150 samples. This is a big leap in efficiency compared to previous methods that required thousands of evaluations. We applied ShinkaEvolve to a diverse set of hard problems with real-world applications: 1/ AIME Math Reasoning: It evolved sophisticated agentic scaffolds that significantly outperform strong baselines, discovering an entire Pareto frontier of solutions trading performance for efficiency. 2/ Competitive Programming: On ALE-Bench (a benchmark for NP-Hard optimization problems), ShinkaEvolve took the best existing agent's solutions and improved them, turning a 5th place solution on one task into a 2nd place leaderboard rank in a competitive programming competition. 3/ LLM Training: We even turned ShinkaEvolve inward to improve LLMs themselves. It tackled the open challenge of designing load balancing losses for Mixture-of-Experts (MoE) models. It discovered a novel loss function that leads to better expert specialization and consistently improves model performance and perplexity. ShinkaEvolve achieves its remarkable sample-efficiency through three key innovations that work together: (1) an adaptive parent sampling strategy to balance exploration and exploitation, (2) novelty-based rejection filtering to avoid redundant work, and (3) a bandit-based LLM ensemble that dynamically picks the best model for the job. By making ShinkaEvolve open-source and highly sample-efficient, our goal is to democratize access to advanced, open-ended discovery tools. Our vision for ShinkaEvolve is to be an easy-to-use companion tool to help scientists and engineers with their daily work. We believe that building more efficient, nature-inspired systems is key to unlocking the future of AI-driven scientific research. We are excited to see what the community builds with it! Learn more in our technical report: arxiv.org/abs/2509.19349
5
53
3
422
Sakana AI retweeted
If you think animal brains are more interesting than LLMs, and that current approaches to AI are missing something, please come and work with me and the team at Sakana AI 🧠✨
We are excited to share that “Continuous Thought Machines” has been accepted as a Spotlight at #NeurIPS2025! 🧠✨ The CTM is an AI that mimics biological brains by using neural dynamics & synchronization to think over time. It can solve complex mazes by building internal maps, gaze around images to classify them, and learn algorithms—all emergent from its core design. This is just the beginning. A hint of what we're exploring next… (video attached!) The team: @LearningLukeD @ciaran_regan_ @risi1979 @jeffreyseely @YesThisIsLion
IASC: Interactive Agentic System for ConLangs arxiv.org/abs/2510.07591 If you’re a fan of science fiction or fantasy, you’ve probably heard of made-up languages like Elvish from “The Lord of the Rings” or Klingon from “Star Trek.” Can LLM agents create new artificial languages? We are happy to announce the release of IASC, an Interactive Agentic System for ConLangs (Constructed Languages). The system is modular in that one creates various pieces of the language—its sound system, how the words and phrases are put together, what kind of inflectional information is marked on words, and how the language is written—via a set of separate modules, each guiding an LLM to produce linguistic structure according to a set of user-provided linguistic specifications. The system can then be instructed to write a small grammatical description of the language, or to translate new texts into the language. Our goal with IASC is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs ‘know’ about language—not what they know about any particular language, but how much they know about and understand linguistic concepts. Indeed, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with settings that are commoner cross-linguistically than those that are rarer.
6
20
3
115
【ロング対談掲載】AIと働いてみて得意と不得意が見えてきた 2025年10月10日発売の『文藝春秋』に、三菱UFJフィナンシャル・グループ 亀澤宏規社長と、Sakana AI COO 伊藤錬の対談が掲載されました。 「今年5月、Sakana AIとMUFGによるパートナーシップ提携がスタートし、MUFGはSakana AI共同創業者 の伊藤錬COOを「AIアドバイザー」に招聘した。… グループ発足以来の最高益を更新したMUFGは、新進気鋭のAIベンチャーと組んで何を始めるつもりなのか。」 AIアドバイザーとして銀行業務を深く学んできた伊藤と、技術的、社会的な側面にも強い関心を寄せる亀澤社長が、金融業界におけるAI活用の最前線から「AIネイティブな組織」の未来までを語り尽くしたロング対談です。 ぜひ、誌面やオンライン版でご一読ください。 文藝春秋 @gekkan_bunshun オンライン版はこちらから: bunshun.jp/bungeishunju/arti…
3
20
Our blog post, “Introducing Continuous Thought Machines” sakana.ai/ctm/
2
1
25
Sakana AI retweeted
Super happy to announce that Continuous Thought Machines has been accepted as a spotlight for NeurIPS2025. We are working on so very many fascinating directions - the CTM architecture just keeps opening doors to fun, thought-provoking projects.
We are excited to share that “Continuous Thought Machines” has been accepted as a Spotlight at #NeurIPS2025! 🧠✨ The CTM is an AI that mimics biological brains by using neural dynamics & synchronization to think over time. It can solve complex mazes by building internal maps, gaze around images to classify them, and learn algorithms—all emergent from its core design. This is just the beginning. A hint of what we're exploring next… (video attached!) The team: @LearningLukeD @ciaran_regan_ @risi1979 @jeffreyseely @YesThisIsLion
1
8
59